

منکک شوه حل و نقل (مدی)

http://mnooriamiri.professora.ir/

دارت طوم، تغیقت د فآدری دانشگاه مورد دانشگاه مورد درندروزی مل و نش

Overview

- The third stage in travel demand modeling
- The trip matrix or O-D matrix is sliced into number of matrices representing each mode
- Two types of mode choice models: binary mode choice and multinomial mode choice

دارت علم مخیات و قادی میان دانشگاه مورد برنکدرزی می و نقل

Mode choice

- **Public transport modes:**
 - Road space more efficiency
 - More social benefits
 - Less congestion
 - Less accidents
 - Low cost
 - Fuel use more efficiently

private transport:

- Highly flexible
- more comfortable and convenient
- better accessibility

مەرىزى حل ونىق

Modal Split

The choice factors of mode

- Characteristics of the trip maker:
 - (a) Car availability and/or ownership;
 - (b) Possession of a driving license;
 - (c) Household structure (young couple, couple with children, retired people etc.);
 - (d) Income;
 - (e) Decisions made elsewhere, for example the need to use a car at work, take children to school, etc;
 - (f) Residential density.

دارت عوم. متیات د فادی میات د انتگاه مورد

Modal Split

The choice factors of mode

- Characteristics of the journey:
 - (a) The trip purpose; for example, the journey to work is normally easier to undertake by public transport than other journeys because of its regularity and the adjustment possible in the long run;
 - (b) Time of the day when the journey is undertaken.
 - (c) Late trips are more difficult to accommodate by public transport.

دارت علم، تمینات و فادی مرابع دانشگاه مورد در مرابع ، مقا

Modal Split

The choice factors of mode

Characteristics of the transport facility:

Quantitative factors:

(a) relative travel time: in-vehicle, waiting and walking times by each mode;

(b) relative monetary costs (fares, fuel and direct costs);

(c) availability and cost of parking

Qualitative factors:

- (a) comfort and convenience
- (b) reliability and regularity
- (c) protection, security

Types of modal split models

- Trip-end modal split models:
 - Modal-split models immediately after trip generation
 - Different characteristics of the person for estimating modal split
 - Person characteristics like income, residential density and car ownership
 - The advantage: very accurate in the short run, if public transport is available and there is little congestion.
 - Limitation: insensitive to policy decisions example: Improving public transport, restricting parking etc.

Types of modal split models

- Trip-interchange modal split models:
 - The post-distribution model
 - Advantage:
 - possible to include the characteristics of the journey and alternative modes available
 - **✓ possible to include policy decisions**
- > Aggregate and disaggregate models:
 - •Aggregate: if based on zonal and inter-zonal information
 - •Disaggregate: if based on household or individual data.

Binary logit model

- >travel choice between two modes
- >value for the utility of each mode

Possibility:
$$C_{ij} = \alpha \cdot t_{ij}^{\lambda} + \beta \cdot F_{ij}^{\gamma} + \delta$$

>If the travel cost is low, then that mode has more probability of being chosen

$$\mathbf{P}_{\mathbf{m}}^{1} = \frac{T_{ij}^{1}}{T_{ij}} = \frac{e^{-\beta C_{ij}^{1}}}{e^{-\beta C_{ij}^{1}} + e^{-\beta C_{ij}^{2}}} \Longrightarrow \mathbf{P}_{\mathbf{m}}^{1} = \frac{1}{1 + e^{C_{ij}^{2} - C_{ij}^{1}}}$$

Multinomial logit model

>travel choice between several modes

$$\mathbf{P}_{\mathbf{m}} = \frac{e^{-\beta C_{ij}^{m}}}{\sum_{m'} e^{-\beta C_{ij}^{m'}}}$$

Multinomial logit model

>Example:

	$t_{\rm v}$	$t_{\rm w}$	t _t	F	Q
coff	٠/٠٣	1/14	11.9	•/1	•/1
car	۲.	•	•	١٨	۴
bus	٣.	۵	٣	۶	•
train	١٢	١.	۲	۴	•

P	e ^{-Cij}	C_{ii}	
%17/4	•/•9	۲/۸	car
%٣١/٠	./10	١/٨٨	bus
%09/9	٠/٢٨	١/٢٨	train
%1/.	./49	total	

$$C^c = 0.03 * 20 + 0.1 * 18 + 0.1 * 4 = 2.8$$

$$P_c = e^{-2.8}/(e^{-2.8} + e^{-1.88} + e^{-1.28}) = 0.124$$

12.4% travel with Car